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Abstract

In this communication, we revise some aspects of the [ideal gas /Van der Waals fluid] partition, derived in an earlier
publication. The general character of the conclusions concerning the dependence of the partial molar free energy of solution,
DG (n), on the chain length, n, of linear solute molecules is shown through the relationship with more general partitions

formulations. Simultaneously, the correction of an error in the expression of the retention time dependence on the phase ratio
of the chromatographic column, b, is carried out. The misleading source of this error was redundant accounting in the solute
translational contribution to DG (n).  1999 Elsevier Science B.V. All rights reserved.s
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1. Introduction molecules, such as the n-alkanes, the excluded
volume effects introduce a non-linear contribution to

We recently published a discussion on the chain DG (n). One aspect that needs to be clarified is thes

length dependence of gas–liquid chromatographic existent relationship between the employed formal-
retention of n-alkanes [1]. The central objective of ism, the [ideal gas /Van der Waals fluid] partition,
the report was to demonstrate that a non linear and more general approaches to the solvation process
behavior for the partial molar free energy of solution, from the standpoint of statistical mechanics. The
DG , with the backbone carbon number, n, of solute molecular formulation by Ben Naim [2,3] is proba-s

chain molecules is expected theoretically. In chro- bly the most cited theoretical background in statisti-
matographic terms, this is translated into an expected cal thermodynamics [4] and it is widely accepted as
non-linear behavior of ln k with n, where k is the a general approach [5]. For this reason, a comparison
retention factor. This aim was accomplished showing of the outstanding remarks from both formalisms
that, in diluted liquid solutions of linear flexible must be considered necessary for a clear comprehen-

sion on the general character of the conclusions
concerning the expected non-linear behavior of*Corresponding author.

E-mail address: rex@nahuel.biol.unpl.edu.ar (F.R. Gonzalez) DG (n).s
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In Ref. [1], the application of the solute’s chemical the canonical partition function, Q, can preserve the
potential difference, between the liquid and gas form for a system of independent, indistinguishable

Nsolutions, led into an erroneous secondary implica- particles, Q5q /N!, q being the molecular partition
tion. This involves an incorrect dependence of DG / function.s

G L For the generalized VW fluid, in the infiniteRT with lnb. The column phase ratio, b, is V / V,
G L diluted regime, the way to establish the averagewhere V and V are the volumes of the gas and

potential energy of a solute molecule is by comput-liquid phases, respectively. Hence, an additional
ing the average distribution of solvent moleculesdependence of the retention time, t , with b wasR

around the ‘central’ solute. By ‘central’ is meant thatincluded. As will be shown by only applying statisti-
the origin of a spherical coordinate system is locatedcal considerations, with no necessary reference to the
at the center of mass of the solute molecule, which isstandard states of solutions, this dependence on lnb
exclusively surrounded by solvent. The averageshould cancel out at the thermodynamic equilibrium.
distribution of solvent molecules around the solute isTherefore, the objective of this communication is
described by the radial distribution function g(r).first to revise Ref. [1], providing the correction of a
This function somehow describes the organizationmisleading error and, second, to show the general
pattern or ‘structure’ of the liquid phase solution.character of the conclusions concerning DG (n). Thes

The average is obtained assuming that the potentialelements necessary for performing both tasks will be
energy is pair-wise additive:developed simultaneously by deriving again DG /s

RT, now following only statistical concepts and `

Navoiding any reference to the solutions’ standard 2]E 5 E U (r) g(r) 4pr dr (1)t 21states. The latter are hypothetical entities necessary V
r *in the context of conventional thermodynamics for 21

unequivocally defining solvation quantities in differ- U (r) is the two-body, solute–solvent, attractive21
ent concentration scales and under differing con- *term of the VW potential function, r is the VW21
ditions [6–8]. Ben-Naim [2,3] showed that these are radius.
unnecessary for the statistical thermodynamic deriva- The partition function of the VW fluid is:
tion of DG , and also that several physical inconsis-s NV1 f Ntencies arise from their use. N] ]Q 5 exp(2E /2kT ) q (2)S D f g3 t r,vN! L

V is the free volume of the system, i.e., that part off

the system that is not affected by excluded volume
2. The Van der Waals fluid formulation of the effects. This is the difference between the total
partition function volume of the system, V, and the excluded volume

U , viz. V 5V2U . The cube of de Broglie’s thermale f e ]]In the formalism of the Van der Waals (VW) fluid, Œwavelength L 5 h / 2pmkT is the partition function
described in Ref. [1], the constant V, T, N canonical for the momentum of translation, m being the mass
Gibbs ensemble is the statistical context (see e.g. of the molecule. The internal partition function, q ,r,vRef. [9]). The symbols denote the volume, tempera- accounts for contributions due to internal degrees of
ture and number of particles defining the system, freedom (rotational and vibrational), allowed by the
respectively. N solute molecules are considered. The2 molecular structure. In the canonical ensemble, the
subscripts 1 and 2 respectively designate the solvent reduced chemical potential of the solute, m /kT, is2and solute. The solute–solvent interaction is repre- related to the partition function, Q, by:
sented by a continuum, a mean force field. This is

L
m ≠lnQquantified by a Boltzmann factor exp(2E /2kT ). E 2t t ] ]]2 5S Dis an effective average solute–solvent intermolecular kT ≠N V,T,N2 1

potential energy of interaction. This approximation LV Ef t Lallows one to treat the solute molecules as indepen- ]] ]5 ln 2 1 ln q (3)S D3L r,v22kTL Ndent particles moving in a mean field potential. Thus, 2 2
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The second equality corresponds to the application of Flory’s theory for diluted solutions of chain-mole-
Eq. (2). The left superscript, L, on the symbols cules, the dependence of the excluded volume frac-
indicates that we are applying the VW fluid partition tion on n is [1,10]:
function to the liquid phase solution. The first term vm2 2 2of the sum is the translational contribution in a ]u (n) 5 (2F 2 cF 1 ...) n (5)eL vmsystem of N free rigid particles, only taking into 12

account the three translational degrees of freedom of
The volumes of the monomers, or structural units,hypothetical rigid spheres. The second term accounts
comprising the solute and solvent are v and v ,m m2 1for the interaction of the rigid particle with its
respectively. The dimensionless function F is theenvironment (a continuum, a mean field representing
product F 5 c [1 2 (Q /T )](v /v ), where c is a1 m m 1the solvent). The last term takes into consideration 2 1

function of the partial molar entropy of dilution atthe internal degrees freedom of the solute. For our
infinite dilution, and Q is the temperature at whichparticular case of linear flexible molecules, there are
the theta state of the solution is attained [10]. The3n25 internal degrees of freedom. 1constant, c, has an order of 10 for n-alkanes [1].An equivalent expression to Eq. (3) can be written

The volume pervaded by a chain molecule may befor the solute’s chemical potential in an ideal gas 2 3 / 2considered to be proportional to ,r . , which issolution, eliminating the interaction term and assum-
G the cube of the root-mean-square end-to-end molecu-ing that the entire volume of the gas phase, V, is

lar distance, r [11]. Monte Carlo calculations showaccessible for the molecules.
that the volume of short polymethylene chains alsoAt the thermodynamic equilibrium, the chemical 2grows approximately with n [12].potential of the solute in the ideal gas solution equals

G Lthat in the liquid: m 5 m . Then, by applying Eq.2 2

(3), and that corresponding to the ideal gas solution,
derives: 3. Formulation by Ben Naim

L
r DG2 s Following basic statistical–mechanical considera-] ]]ln ; ln K ; 2S DG RTr tions, Ben-Naim derived a very general expressioneq2

for the chemical potential of the solute in anLqE r,vt 2 environment that can range from extremely diluted] ]]5 2 1 ln 1 ln(1 2 u ) (4)G e2kT q solutions to pure solute [2,3]:r,v2

3*m 5 m 1 kT ln r L (6)2 2 2 2The number density of solute molecules is r 5N /V.2 2

The ratio of number densities in both phases is equal *The ‘pseudochemical potential’, m , contains all of2to the ratio of molar concentrations, which is, in turn,
the relevant information concerning the interaction of

equal to the distribution coefficient as it is currently
the solute molecule with its medium, i.e., of the

defined in thermodynamics of the continuum: K;
solvation. In the context of the ( p, T, N) ensemble, isL G Lc / c . The free volume of the liquid solution, V ,2 2 f defined as the Gibbs free energy difference for theL Lfrom Eq. (3) was substituted into Eq. (4) by V 5 Vf process of adding only one solute molecule at a fixed

(12u ), where u is the excluded volume fraction ofe e position vector R , in a system of N solute mole-L o 2the liquid solution (u 5U / V ). Then, the freee e cules; preserving constant p, T and the number of
volume fraction of the solution is (12u ).e solvent molecules N :1In Ref. [1], it was shown that the third term, and
last, of Eq. (4) is the one that introduces the non- *m 5 G( p, T, N 1 1, N , R ) 2 G( p, T, N , N ) (7)2 2 1 o 2 1
linear behavior in DG (n). The reason is that, ins

3solutions of chain molecules, the excluded volume The second term of Eq. (6), kT ln(rL ), was referred
fraction is not an additive function of the excluded to as ‘the liberation free energy’ contribution to m .2

volume of the monomers comprising the molecule, This denomination was preferred by Ben Naim to the
due to the connectivity of the chain. According to traditional ‘translational contribution’ [see Eq. (3)],
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L G Ldue to the fact that, in certain systems, there is no * * *DG m 2 m rs 2 2 2
]] ]]]] ]proper translation, although a similar term may arise. ; 5 2 ln S DGkT kT r eq2Eq. (6) can be derived in the canonical ensemble

L(V, T, N), the grandcanonical (V, T, m) or the ( p, T, qW(2 /1) r,v2
]]] ]]5 2 ln (10)N) ensemble [3]. The unique condition is the ap- GkT3 qr,v2plicability of classical statistical mechanics (rL <

1). In the ( p, T, N) ensemble, Eq. (6) is valid if In the molar concentration scale, at infinite dilution,
r 5N / kV l, where kV l is the average volume of the2 2 the definition of the (reduced) standard molar free
system; while in the (V, T, m) ensemble, it is valid if energy of solution DG /RT is coincident in mag-s
r 5kN l /V, where kN l is the average number of2 2 2 nitude with the molecularly relevant solvation
particles in the system. *quantity DG /kT defined by Ben Naim [3].sFor an interacting solute molecule with internal Currently, the coupling work, W(2 /1), is, in turn,
degrees of freedom, the pseudochemical potential decomposed as follows [5]:
may be decomposed as:

W(2 /1) 5 W 1 W 1 W , etc. (11)cav elec dispersion*m 5 W(2 /1) 2 kT ln q (8)2 r,v2

The first term of the sum is the work of formation of
In this equation, it is assumed that the internal the solute cavity. The cavity at the fixed position R0

degrees of freedom are independent of the inter- is the volume of the system where the solute is
action. W(2 /1) is the ‘coupling work’ of the solute placed, i.e., that domain that is excluded to all other
into a fixed position R in the system. The system to particles; what in the context of the VW fluid iso

which the solute is coupled, in our context of infinite named the molecular ‘excluded volume’. W takescav

dilution regime, would be composed solely of sol- into account that part of the intermolecular potential
vent molecules. The coupling work is the average (2 /1) corresponding to a hard core, while the rest of
energy of interaction of the solute with its entire the contributions concerning W(2 /1) are referred to
surroundings and, for a rigid particle, is: as the ‘soft’ part of the solute–solvent interaction

potential.
W(2 /1) The scaled particle theory (SPT) provides a theo-]]] 5 2 ln kexp(2E /kT ) l (9)21kT retical context for computing the free energy of

cavity formation for hard spheres [3,5]. In theE is the binding potential energy of the solute to21
particular case of cavities of radius r presenting athe system at one specific configuration of mole-
small value with respect to the radius of the solventcules. The indicated average is the ensemble average

1particle , the work of cavity formation has an exactover all possible configurations of molecules around
expression [3]:the central solute. Strictly speaking, when the inter-

nal degrees of freedom of the molecule are affected W N vcav cav
]] ]]5 2 ln 1 2 (12)by the interaction, both terms from the right-hand S DLkT Vside of Eq. (8) cannot be determined separately. In

3this case, the pseudochemical potential has to be com- The probability of finding the volume v 54pr /3cav
L G L* *puted as ( m 2 m /kT ) 5 2 ln kkexp[2E (P) / occupied is rv , where r 5N / V is the number2 2 2 cav

kT ]ll. The first average is performed for all con- density of particles that are potentially capable of
figurations of N particles around the solute, at occupying the cavity. Then, the probability of finding1

a specific conformation, P, of the latter. The the volume v empty is P (r)5(12rv ). Thecav o cav

second average is performed over all conformations relationship between the probability P (r) and theo

of the solute, pondered by their statistical weights reduced work of cavity formation is W /kT52lncav

through the distribution function of conformations
y(P). 1It should be remarked that this condition is generally applicableG LAt the thermodynamic equilibrium, m 5 m . to the gas–liquid chromatographic system. The solute molecule is2 2

Hence, by applying Eqs. (6) and (8), we have: always much smaller than the solvent.
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P (r). It should be noted that Nv plays the same standard states for the solutions. This fact, which waso cav

role as the excluded volume of the system, U , does discussed thoroughly in the ambit of chemicale

in the VW fluid. Eq. (12) provides a positive physics [2–4], has consequences of importance for
contribution to W(2 /1) (or in turn to DG ). The gas–liquid chromatography. These will be treated ins

reason is that energy is always needed to build up an a forthcoming paper.
G Lempty cavity in a fluid. The volume ratio b 5 V/ V, which belongs to the

Finally, we can rewrite Eq. (10) in the same form translational contribution to the solute’s chemical
as Eq. (4), using the nomenclature applied for the potential, at the thermodynamic equilibrium, is con-
VW fluid: tained in K [Eqs. (4) and (13)], so it is eliminated

from the right-hand side of these equations. We mustLqDG W(2 /1) r,vs soft 2 conclude that the dependence of DG on b cannot bes]] ]]] ]]2 5 2 1 ln 1 ln(1 2 u )G eRT kT q sustained in the theoretical context of Ref. [1], andr,v2

the incorrect Eq. (12) from that reference has to be(13)
replaced by Eq. (4) from the present report.

W(2 /1) accounts for all contributions to the The application of Eq. (4) or Eq. (13) to thesoft

coupling work W(2 /1), with the exception of the chromatographic retention of n-alkanes, which are
work of cavity formation, which is indicated separ- long enough to admit intramolecular interactions
ately as the last term of the sum in accordance with (n$5), renders:
the SPT limit case for low solute / solvent ratios of 2t (n) 5 t 1 exp[A 1 B(n 2 2) 1 ln(1 2 Cn )] (14)R Mmolecular radii.

Now, the only difference with Ref. [1] resides in
the physical meaning of the first parameter in the4. Discussion

1exponential: A 5 ln(t /b ) 2 DG /RT, where t isM M
1the gas hold-up time. 2DG /RT is the extrapolationThe [ideal gas /VW fluid] derivation of the chemi-

L Gof the sum [2E /2kT 1ln( q / q )], for n-alkanest r,v r,vcal potential is limited to the canonical ensemble,
admitting intramolecular interactions (n$5) to n52.requiring the formulation of some molecular hypoth-
Therefore, we must assume that the conclusioneses. Ben Naim’s expression for the solute chemical
derived in Section 7.1 of Ref. [1] is incorrect. Thepotential can be derived from other ensembles
few experimental data from Fig. 3 in Ref. [1] shouldwithout making specific molecular assumptions;
be reinterpreted with the aid of additional experimen-hence it’s generality. It should be noted that the
tal information, a task that we shall face in ahypotheses later needed for deriving Eq. (13) also
forthcoming paper.have a very general character. From the comparison

of Eq. (4) and Eq. (13), we see that both present
basically the same features. However, the form to
compute the interactions is different, as follows from 5. Conclusions
the comparison of Eqs. (1) and (9). In the VW
theory, the computation of the average potential A more general statistical treatment of the free
energy of the solute molecule concerns the two-body energy of solution leads to the same conclusions
attractive potential U . obtained formerly with the simple [ideal gas /VW21

From the general point of view of statistical fluid] formulation. There is a non-linear contribution
Lthermodynamics, the ratio of numeral densities ( r / to DG (n) of linear flexible molecules arising from2 s

G
r 5K) at equilibrium is the parameter defining the the fact that the pervaded volume by the solute2

solvation process. As seen through Eq. (4) or Eq. molecule is not an additive property of the number of
(10), this is directly related to the relevant molecular structural units comprising it. This is the conse-
thermodynamic quantities of solvation. In other quence of chain connectivity, i.e. of the preservation
words, the distribution coefficient K unequivocally of bond length and angles. In more general terms, the
quantifies solvation without the necessity of defining work of cavity formation does not present a linear
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